欢迎访问 Lu程序设计

Lu参数优化动态库LuOpt V1.0

目  录

1 什么是LuOpt

2 Lu优化函数

luopt::Opt 求无约束或约束条件下的n维极小值 无约束优化能力极强,约束优化能力弱,速度快。随机生成初值,全局优化,解不稳定。
3 优化实例
3.1 较难的例子 选自网上的难题例子  
3.2 非线性拟合测试题 选自1stOpt的九道测试题  
3.3 微分方程参数优化(拟合) 选自网上实例  
3.4 求解NIST非线性测试题 NIST 27 道非线性拟合测试题  
4 求方程(组)的全部解
luopt::iFind 求单变量方程(隐函数)的全部解 求解能力强,解是稳定的。
luopt::Find 求方程组的全部解 求解能力强,解不稳定。
5 注册    
luopt::OptPassword 获取机器码,免费注册后使用LuOpt的全部功能 已取消免费注册,可直接使用LuOpt的全部功能。

1 什么是LuOpt [返回页首]

    LuOpt64.dll是一个Lu参数优化动态库,主要包含一些参数优化函数和解方程函数。

    在LuOpt中的函数是通过二级函数命名空间“luopt”输出的,所有函数均具有类似“luopt::Opt(...)”的格式。使用!!!using("luopt");可简化LuOpt中的函数访问。

    免费注册说明:为了演示设计商业性Lu扩展动态库的可行性,LuOpt设计成须注册后使用其全部功能。如果没有注册,当优化参数多于2个时,Opt函数仅返回最小值,不能返回优化参数。目前免费注册,用函数luopt::OptPassword获取机器码后,通过E-mail发送到forcal@sina.com获取注册码 (已取消免费注册,可直接使用LuOpt的全部功能)。

    函数OptPassword的格式(返回值及参数pw1,pw1,... ...,pwn将返回多个机器码):luopt::OptPassword(&pw1,&pw1,... ...,&pwn)

    函数OptPassword的用法1:luopt::OptPassword();

    函数OptPassword的用法2:(:pw)=luopt::OptPassword(&pw),pw;

    函数OptPassword的用法3:(:pw)=luopt::OptPassword(0,&pw),pw;

    获取注册码后,在加载LuOpt64.dll时提供注册码即可。一般格式为(注册码在冒号后):"dll\LuOpt64.dll:604508320"

2 Lu参数优化函数 [返回页首]

[返回页首] luopt::Opt(f, luopt::optconfun,r, luopt::optrange,x1min,x1max,x2min,x2max,...,xnmin,xnmax, luopt::optautorange,autorange, luopt::optmin0,min0, luopt::optmax,max, luopt::optbuf,&buf, luopt::optmode,mode, luopt::optdeep,deep, luopt::optbreadth,breadth, luopt::optkeepmins,keepmins, luopt::optfast,fast, luopt::optwaynull, luopt::optwaysim, luopt::optwaysimdeep, luopt::optwayconfra, luopt::optwaygrad,grad, luopt::optwaygrow, luopt::opteps,eps, luopt::optsameeps,sameeps, luopt::optsameabs,sameabs, luopt::optout,out, luopt::optnum,num, luopt::optarray,a, luopt::optarraybegin,&k, luopt::optarraystarter,arraystarter, luopt::optexpand,expand, luopt::optcontract,contract, luopt::optsimratio,simratio,  luopt::optstarter,&x1, &x2, ... ... , &xn, &min):求无约束或约束条件下的n维极小值

f:自定义n元函数句柄,用于计算目标函数f(x1,x2,...,xn)的值,不可缺省。该函数由用户自编,格式如下:

f(x1,x2,...,xn)=
{
    g(x1,x2,...,xn)
};

luopt::optconfun,r:自定义n元函数句柄,用于计算约束条件r(x1,x2,...,xn)的值(返回非0值表示满足约束条件,若不满足约束条件,应返回0、false或nil),可缺省该参数。该函数由用户自编,格式如下:

r(x1,x2,...,xn)=
{
    g(x1,x2,...,xn)
};

luopt::optrange,x1min,x1max,x2min,x2max,...,xnmin,xnmax:指定搜索区间 。搜索区间越小,越容易获得最优值。若缺省该参数,则所有变量区间均为[-1e20~1e20]。
luopt::optautorange,autorange:autorange!=0时将在指定搜索区间内自动调节合适的搜索区间,否则不进行调节。默认是自动调节搜索区间的。
luopt::optmin0,min0:解的可能的极小值。可以缺省该参数,缺省值为±1e-20。
luopt::optmax,max:max>=10,控制搜索精度,max越大精度越高,但时间越长。可以缺省该参数,缺省值为100。
luopt::optbuf,buf:buf>=1,控制缓冲区大小,缓冲区并非越大越好。可以缺省该参数,缺省值为5。
luopt::optmode,mode:mode>=0,控制工作模式。mode越大准确度越大。可以缺省该参数,缺省值为16。
luopt::optdeep,deep:deep>=0,控制搜索深度。deep越大准确度越大。可以缺省该参数,缺省值为20。
luopt::optbreadth,breadth:breadth>=0,控制搜索广度以替代默认的搜索方法。breadth越大搜索范围越大。 通常breadth取10~20。可以缺省该参数,breadth=0也相当于缺省该参数。
luopt::optkeepmins,keepmins:keepmins>=0,控制下一轮搜索时保留的极小值数目。可以缺省该参数,keepmins=0也相当于缺省该参数 ,此时保留所有极小值。
luopt::optfast,fast:fast!=0,进行快速搜索。可以缺省该参数,缺省值为fast=0。
luopt::optwaynull:清除所有局部搜索方法。
luopt::optwaysim:使用单形调优法局部搜索,这是默认的局部搜索方法。
luopt::optwaysimdeep:使用单形调优法局部深度搜索。
luopt::optwayconfra:使用连分式局部搜索方法。
luopt::optwaygrad,grad:使用梯度搜索方法。grad>=0,控制梯度搜索的深度。grad越大耗时越长。通常取grad=0。
luopt::optwaygrow:使用扩展式搜索方法。
luopt::opteps,eps:控制精度要求,eps>0。可以缺省该参数,缺省值为1e-6。
luopt::optsameeps,sameeps:相对比较两组值是否相等的极小值。sameeps>0。可以缺省该参数,缺省值为1e-2。
luopt::optsameabs,sameabs:绝对比较两组值是否相等的极小值。sameeps>=0。可以缺省该参数,缺省值为1e-3。
luopt::optout,out:是否输出结果。out非0时输出。可以缺省该参数,默认输出结果。
luopt::optnum,num:设置最多输出的极小值的个数。可以缺省该参数,默认输出1个极小值。
luopt::optarray,a:提供一个数组,用于接受结果。一组结果包括所有的自变量参数及极小值。默认从数组开始存放数据,也可用参数optarraybegin指定开始存放数据的位置。可以缺省该参数。
luopt::optarraybegin,&k:指定数组中开始存放数据的位置,k返回下一个存放位置。可以缺省该参数,默认从地址0开始存放。
luopt::optarraystarter,arraystarter:arraystarter!=0将指定数组中包含一组初值。可以缺省该参数,缺省值为arraystarter=0。若同时指定了optstarter,optstarter中的初值被忽略。
luopt::optexpand,expand:单形调优法扩张系数。一般取1.2~2.0。可以缺省该参数,缺省值为1.6。
luopt::optcontract,contract:单形调优法收缩系数。一般取0~1。可以缺省该参数,缺省值为0.5。
luopt::optsimratio,simratio:单形调优法调整系数。一般取0~2之间的数,但不可取0和1这两个值。可以缺省该参数,缺省值为0.9。
luopt::optstarter,&x1, &x2, ... ... , &xn, &min:前n个参数提供一组初值(可为任意值),返回最优参数值 ,最后一个参数返回极小值。可以缺省该参数。

返回值:极小值个数。

说明1:luopt::optmax、luopt::optbuf、luopt::opteps等标识参数类型,次序是任意的,可缺省。

说明2:该函数使用随机算法搜索全局最小值,故解是不稳定的,应多次搜索甚至变换参数搜索,以最小者为最优。

运行错误:

1:指定的表达式不存在;
2:常量表达式或者自变量不能重新赋值;
3:内存错误;
4:参数不匹配;
5:不可识别描述符;
6:参数不符合要求;
7:约束函数有错误:参数不匹配、自变量重新赋值或者函数不存在;
8:自定义函数返回了非法值。

例子1:计算下列目标函数的极小值点与极小值。
    J=100*(x1-x0*x0)2+(1-x0)2

程序如下:

f(x0,x1)=100*(x1-x0*x0)^2+(1-x0)^2;
luopt::Opt[
@f];

结果:

1. 1. 0.

例子2:求下列隐函数z的最小值:

    z=sin[(z*x-0.5)^2+2*x*y*y-z/10]*exp{-[(x-0.5-exp(-y+z))^2+y*y-z/5+3]}

    其中x范围[-1,7],y范围[-2,2]。

程序如下:

!!!using("luopt");
f(x,y,z)=z+1e10*{z-sin[(z*x-0.5)^2+2*x*y*y-z/10]*exp{-[(x-0.5-exp(-y+z))^2+y*y-z/5+3]}}^2;
//构造目标函数,注意1e10
Opt[@f, optwaysimdeep, optwayconfra, optrange,-1.,7., -2.,2., -1e10,1e10];
//Opt[@f, optwaygrow, optrange,-1.,7., -2.,2., -1e10,1e10];    //也可以使用此语句,结果相同

结果:

2.898270235856681 -0.8573130005839527 -2.335408331097716e-002 -2.335408328621853e-002

如果不指定范围,程序如下:

!!!using("luopt");
f(x,y,z)=z+1e10*{z-sin[(z*x-0.5)^2+2*x*y*y-z/10]*exp{-[(x-0.5-exp(-y+z))^2+y*y-z/5+3]}}^2;
//构造目标函数,注意1e10
Opt[@f, optwaygrow, optwaygrad,0, optmode,200];

结果(需多次运行):

2.898270235856681 -0.8573130005839527 -2.335408331097716e-002 -2.335408328621853e-002

例子3:求针状函数的全局最小值,并返回10个极小值:

    f(r)=-sin(r)/r+1

    其中:r=sqrt[(x-50)^2+(y-50)^2]+exp[1.0]。

程序如下:

!!!using("luopt");
f(x,y:t)=  
//目标函数定义
{
    t=sqrt[(x-50)^2+(y-50)^2]+exp[1.0],
    -sin[t]/t-1
};
Opt[@f, optwaygrad,0, optnum,10];

结果(需多次运行):

50.               50.               -1.151117991593894
45.04713670154168 50.73409357987649 -1.128374553525899
47.95358156651113 54.56960337517742 -1.128374553259392
48.61084727988142 45.18968474411513 -1.128374553040821
51.53888994360668 55.27956633578699 -1.11373603845343
50.0914003285785  38.652456006392   -1.070913459450462
55.57756844733133 40.1173971653779  -1.070913459450462
47.78264700546625 38.87080820770154 -1.070913459436176
43.59630987066741 40.6315049957481  -1.070913459402211
46.75204544703252 39.12675998582707 -1.070913459306036
10.

3 优化实例

3.1 较难的例子

3.1.1 拟合公式:y = (p1)+(p2*Exp(-p3*x/p5)+p4/(1+p4*p5*x))

p1,p2,p3,p4,p5为待求参数

数据(x, y)
0, 0.928
0.0000098, 1.02
0.0000195, 1.12
0.0000293, 1.25
0.0000391, 1.42
0.0000488, 1.7
0.0000586, 2.01
0.0000684, 2.26
0.0000781, 2.46
0.0000879, 2.63
0.0000977, 2.82
0.0001074, 3.01
0.0001172, 3.2
0.000127,  3.41
0.0001367, 3.59
0.0001465, 3.72
0.0001562, 3.85
0.000166,  3.98
0.0001758, 4.08

(正解的均方差RMSE=0.033377163531,残差平方和为0.0211666658630,相关系数R = 0.999497560)

Lu代码:

!!!using["luopt","math"];
f(p1,p2,p3,p4,p5:i,s,x,y:Array,max)=
{
    s=0,i=0,(i<max).while{
        x=Array[i,0], y=Array[i,1],
        s=s+[(p1)+(p2*exp(-p3*x/p5)+p4/(1+p4*p5*x))-y]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=19,
    Array=new[reals,max,2].SetArray{
        0, 0.928,
        0.0000098, 1.02,
        0.0000195, 1.12,
        0.0000293, 1.25,
        0.0000391, 1.42,
        0.0000488, 1.7,
        0.0000586, 2.01,
        0.0000684, 2.26,
        0.0000781, 2.46,
        0.0000879, 2.63,
        0.0000977, 2.82,
        0.0001074, 3.01,
        0.0001172, 3.2,
        0.000127,  3.41,
        0.0001367, 3.59,
        0.0001465, 3.72,
        0.0001562, 3.85,
        0.000166,  3.98,
        0.0001758, 4.08
    },
    Opt[@f, optwaysimdeep, optwayconfra, optdeep,50]
};

结果(需多次求解):

6.855486033798995 4.813449005068769 -54298054.6899329 -10.72898361613976 -1516.502649185066 3.337716353170544e-002

3.1.2 拟合公式:z = p0*(1-exp(-p1*(x-p2)))+p3*x^p4+p5*x*y;

参数:p0 - p5
变量:x,y,z
数据(x,y,z):
2        101       172
3        14        210
4        136       241
5        52        265
6        67        280
7        81        289
8        54        294
9        20        302
10        6        299
11        2        306

Lu代码:

!!!using["luopt","math"];
f(p0, p1, p2, p3, p4, p5 :i,s,x,y,z:Array,max)=
{
    s=0,i=0,(i<max).while{
       
x=Array[i,0], y=Array[i,1], z=Array[i,2],
        s=s+[ p0*(1-exp(-p1*(x-p2)))+p3*x^p4+p5*x*y-z]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=10,
    Array=
new[real_s,max,3].SetArray{
        "2 101 172
        3 14 210
        4 136 241
        5 52 265
        6 67 280
        7 81 289
        8 54 294
        9 20 302
        10 6 299
        11 2 306"
    },
    Opt[@f, optwayconfra]
};

结果(需多次求解):

306.0849059154657 0.4607174830055115 0.9026291308250309 248.1563530146011 -2.274779410407842 -3.621982090081021e-003 1.506033828737254

3.1.3 拟合公式:y=a*(x-d)^4+b*(x-d)^2+c;

x          y
-0.08    20.26008
-0.065   19.72613
-0.05    19.501619
-0.03    18.72662
-0.015   18.58769
0.015    18.592199
0.03     18.88372
0.05     19.5453
0.065    19.88743
0.08     20.9914
0        18.12336

Lu代码:

!!!using["luopt","math"];
f(a, b, c, d :i,s,x,y:Array,max)=
{
    s=0,i=0,(i<max).while{
        x=Array[i,0], y=Array[i,1],
        s=s+[ a*(x-d)^4+b*(x-d)^2+c-y]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=11,
    Array=new[reals,max,2].SetArray{
    "-0.08 20.26008
    -0.065 19.72613
    -0.05 19.501619
    -0.03 18.72662
    -0.015 18.58769
    0.015 18.592199
    0.03 18.88372
    0.05 19.5453
    0.065 19.88743
    0.08 20.9914
    0 18.12336"
    },
    Opt[@f, optwaysimdeep, optwayconfra]
};

结果(需多次求解):

420.0265769742538 -170.7483372687845 35.81768548688493 -0.449622975242104 0.1543213604571683

3.2 非线性拟合测试题

参考:http://www.7d-soft.com/Regression_Test.htm

非线性拟合测试题

NIST的测试题对于其它拟合软件,可当作验证标准,但对于1stOpt,实在过于简单,缺乏挑战性。下面我们给出九道测试题及由1stOpt计算出的最优解(RMSE:均方差; R^2:相关系数之平方),每道题有且只有唯一的最优解。有兴趣的用户可尝试任何其它相关软件工具,看能否得出与我们相同或更优的结果。

当用1stOpt求解时,优化算法均选用麦夸特(LM) + 通用全局优化算法(UGO)。有些试题难度较大,在优化参数设定时可考虑增加”重复数“,比如从缺省的30变为50

 

测试题编号 拟合模型公式 变量名/变量数 参数 均方差 RMSE 相关系数 R^2
1

y=1/(p1+p2*X^p3)+p4*x^p5

x, y p1 to p5

104.376667

0.99678004
2

y = (p1+p2*x1+p3*x2+p4*x3+p5*x4)/(1+a1*x1+a2*x2+a3*x3+a4*x4)

x1 to x4, y p1 to p5, a1 to a4

0.3028129

0.9346422
3

y = p1/(1+p2/x+x/p3)

x, y p1 to p3

0.8767278

0.969929562
4 y = (a0+a1*x1+a2*x2+a3*x3+a4*x4)/(1+b1*x1+b2*x2+b3*x3+b4*x4) x1 to x4, y a0 to a4, b1 to b4

48.05714

0.80514286
5 z = p1+p2*x^p3+p4*y^p5+p6*x^p7*y^p8 x, y, z p1 to p8 0.2703296 0.994632848
6 y = a0+a1*x^k1+a2*x^k2+a3*x^k3 x, y a0 to a3, k1 to k3 0.0214726136 0.999644261
7 z = (p1+p2*x+p3*y+p4*x*y)/(1+p5*x+p6*y+p7*x*y) x, y, z p1 to p7 1.00626078 0.9715471
8 y=p1/((p2+x1)*(1+p3*x2)*(x3-p4)^2)+p5*x3^p6 x, y p1 to p6 0.01977698 0.995372
9 y=a*exp(b*abs(x+c)^d) x, y a, b, c, d 1.1546909 0.9704752

 

测试题1数据

No      x       y

No      x      y

No      x       y

No      x        y

No      x        y

No      x        y

1  160.73  6266.7

2  159.82  6151.9

3  158.84  6035.1

4  157.86  5920.9

5  156.87  5812.6

6  155.88  5702.2

7  154.89  5594.9

8  153.96  5491.3

9  152.97  5385

10 151.98  5282.2

11 150.99  5181.3

12 150.06  5084.8

13 149.08  4988.8

14 148.09  4892.2

15 147.1   4796.9

16 146.17  4701

17 145.18  4608

18 144.2   4515.2

19 143.2   4429.6

20 142.21  4342.9

21 141.25  4255.6

22 140.2   4167.1

23 139.14  4077.6

24 138.05  3987.9

25 136.96  3898.9

26 135.94  3808.5

27 134.84  3717.7

28 133.74  3628.9

29 132.65  3543

30 131.57  3456.3

31 130.55  3372.5

32 129.47  3292.8

33 128.4   3212.7

34 127.33  3133.6

35 126.34  3056.6

36 125.29  2985.5

37 124.26  2912.5

38 123.23  2842.9

39 122.21  2774.1

40 121.21  2708.3

41 120.27  2642.1

42 119.27  2580.2

43 118.29  2518.7

44 117.32  2459.1

45 116.42  2401.1

46 115.48  2344.3

47 114.55  2290.9

48 113.62  2237.5

49 112.7   2189

50 111.85  2138.8

51 110.94  2089.4

52 110.03  2042.4

53 109.13  1998.1

54 108.28  1953.6

55 107.38  1906.6

56 106.48  1867.8

57 105.6   1824.5

58 104.72  1784.3

59 103.91  1745

60 103.05  1704.5

61 102.2   1668.7

62 101.35  1629  

63 100.51  1590.4

64 99.739  1552.5

65 98.913  1514.7

66 98.103  1476.4

67 97.308  1444.3

68 96.513  1411.4

69 95.78   1378.5

70 95.002  1344.8

71 94.239  1307.8

72 93.482  1276.1

73 92.776  1243.5

74 92.039  1212.9

75 91.314  1178.7

76 90.604  1148.4

77 89.942  1115.9

78 89.244  1084.5

79 88.559  1051.5

80 87.889  1029.7

81 87.226  996.16

82 86.569  965.86

83 85.963  937.72

84 85.323  907.87

85 84.694  877.58

86 84.081  838.17

87 83.473  819.48

88 82.876  797.76

89 82.287  768.54

90 81.811  749.96

91  81.178  724.39

92  80.614  697.24

93  80.118  674.67

94  79.574  649.49

95  79.011  629.83

96  78.478  614.6

97  78.012  591.87

98  77.494  573.43

99  76.927  558.94

100 76.512  539.45

101 75.962  526.99

102 75.472  514.14

103 75.014  504.11

104 74.566  484.4

105 74.123  473.23

106 73.608  468.93

107 73.183  453.77

108 72.774  448.58

109 72.369  447.73

110 71.897  431.79

111 71.503  432.45

112 71.116  432.15

113 70.741  420.71

114 70.3    427.26

115 69.935  419.76

116 69.572  407.28

117 69.148  408.04

118 68.796  393.71

119 68.448  403.74

120 68.114  408.8

121 67.717  401.26

122 67.374  400.81

123 67.037  401.89

124 66.741  408.68

125 66.416  398.49

126 66.015  414.14

127 65.373  419.78

128 64.769  426.82

129 64.109  418.42

130 63.44   446.32

131 62.772  451.55

132 62.111  473.27

133 61.508  499.69

134 60.908  523.66

135 60.219  551.47

136 59.699  593.53

137 59.119  608.69

138 58.547  658.08

139 57.992  712.27

140 57.483  769.4

141 56.969  826.48

142 56.472  896.05

143 55.989  957.57

144 55.513  1065.1

145 55.088  1114.1

146 54.651  1195

147 54.237  1271.5

148 53.836  1355.6

149 53.318  1483.2

150 52.701  1690

151 52.08   2245.9

152 51.431  2470.4

153 50.877  2719.1

154 50.298  2957.5

155 49.74   3155.2

156 49.2    3279.4

157 48.702  3546.4

158 48.182  3741

159 47.681  4021

160 47.213  4015.1

161 46.768  4304.7

162 46.368  4127.9

163 45.956  4530.9

164 45.55   4802.9

165 45.157  5047.4

166 44.799  4804.3

167 44.43   5164.1

168 44.078  4781

169 43.727  5175.5

170 43.384  5708.6

171 43.079  5679.6

172 42.899  5161.8

173 42.719  5399.1

174 42.547  5483

175 42.253  4839.4

176 41.962  5360.7

177 41.691  5622

178 40.602  5772.3

 

测试题2数据

测试题3数据

测试题4数据

测试题5数据

No  x1    x2     x3    x4    y

No      x      y

No  x1  x2   x3  x4   y

No.  x   y   z

1  15100 29000   508.0 180 3.40

2  20500 43350   453.7 141 3.00

3  80000 92610   487.9 132 2.70

4  91500 142775  572.3 182 3.37

5  82500 2123160 455.7 113 6.89

6  20000 227800  481.3 170 5.03

7  17800 140000  541.3 179 3.55

8  3900  15980   538.6 186 2.72

9  17300 223200  460.6 100 4.05

10 25700 229400  393.1 133 3.22

11 49400 424500  373.9 106 2.65

12 40700 561700  482.8 107 1.91

13 77000 563600  482.1 140 3.00

14 92900 557600  415.1 121 1.31

15 63300 528300  536.7 144 2.33

16 51600 488940  385.1 154 3.55

17 60000 480500  412.2 111 3.37

18 70000 530500  567.2 139 2.55

1  80.0    6.64  

2  140.9   11.54

3  204.7   15.89

4  277.9   20.16

5  356.8   21.56

6  453.0   21.69

7  505.6   22.66

8  674.5   23.15

9  802.32  18.16

10 936.04  16.81

1  14  1.38  -34  16  582

2  10  0.52  -29  2   458

3  13  1.70  -32  13  559

4  24  0.80  24   1   322

5  12  1.83  41   11  399

6  6   1.77  -50  7   523

7  18  1.23  27   4   322

8  -10 0.28  -8   6   358

9  0   1.20  66   6   354

10 14  1.75  -60  6   574

11 12  1.78  -70  7   489

12 -18 1.37  -15  0   232

13 16  1.38  0    4   440

14 -4  0.29  -9   -7  421

15 -23 1.12  -12  -14 181

16 5   1.52  0    10  426

17 -16 0.63  34   1   364

18 -1  1.32  22   -7  375

19 -18 1.18  4    -11 224

20 8   1.50  -11  5   514

21 -8  1.43  4    -12 381

22 -11 0.74  10   0   275

23 -19 1.07  -5   0   426

1  500  25  1.5   

2  500  50  2.25  

3  500  100 3.15  

4  500  200 4.0   

5  500  300 4.2   

6  500  400 4.3   

7  1000 25  1.45  

8  1000 50  2.35  

9  1000 100 3.95  

10 1000 200 6.95  

11 1000 300 8.15  

12 1000 400 8.4   

13 1500 25  1.45  

14 1500 50  2.45  

15 1500 100 4.15  

16 1500 200 7.45  

17 1500 300 10.65

18 1500 400 11.85

19 2000 25  1.45  

20 2000 50  2.5   

21 2000 100 4.2   

22 2000 200 7.75  

23 2000 300 11.45

24 2000 400 14.3  

 

测试题6数据

测试题7数据

测试题8数据

测试题9数据

No      x      y

No      x      y      z

No   x1    x2     x3    y

No      x      y

1       1.0     8.2

2       2.0     4.6

3       3.0     4.3

4       4.0     4.6

5       5.0     5.1

6       6.0     5.5

7       7.0     5.7

8       8.0     5.5

9       9.0     5.0

10      10.0    3.8

1  4332  26.94   43.70  

2  4697  23.64   44.50  

3  5062  25.19   47.70  

4  5428  28.60   52.30  

5  5793  28.74   54.21  

6  6158  29.33   55.58  

7  6523  32.92   55.70  

8  6889  31.87   57.70  

9  7254  33.07   58.60  

10 7619  29.36   60.24  

11 7984  27.96   59.13  

12 8350  30.18   57.00  

13 8715  37.84   57.30  

14 9080  38.86   59.00  

15 9445  35.18   60.20  

16 9811  28.81   61.80  

17 10176 34.57   63.17  

18 10541 37.49   66.23  

19 10906 29.30   61.80  

20 11272 32.47   62.03  

21 11637 38.24   65.30  

1  34.9 0.043378  8  0.996556   

2  34.9 0.216888  8  0.985708   

3  34.9 0.433776  8  0.973826   

4  58.2 0.026027  8  0.999409   

5  58.2 0.130133  8  0.99817    

6  58.2 0.260265  8  1.000176   

7  93.1 0.016267  8  0.995131   

8  93.1 0.081333  8  1.009887   

9  93.1 0.162666  8  1.008251   

10 34.9 0.043378  20 0.835576   

11 34.9 0.216888  20 0.777734   

12 34.9 0.433776  20 0.715483   

13 58.2 0.026027  20 0.854949   

14 58.2 0.130133  20 0.822743   

15 58.2 0.260265  20 0.784273   

16 93.1 0.016267  20 0.85902    

17 93.1 0.081333  20 0.841512   

18 93.1 0.162666  20 0.81895    

19 34.9 0.043378  40 0.387322   

20 34.9 0.216888  40 0.338941   

21 34.9 0.433776  40 0.293558   

22 58.2 0.026027  40 0.342388   

23 58.2 0.130133  40 0.311761   

24 58.2 0.260265  40 0.280112   

25 93.1 0.016267  40 0.308071   

26 93.1 0.081333  40 0.287257   

27 93.1 0.162666  40 0.264443   

1       27.25   1

2       27.75   3

3       28.25   6

4       28.75   13

5       29.25   18

6       29.75   19

7       30.25   17

8       30.75   16

9       31.25   6

10      31.75   5

11      32.25   2

第1题:

!!!using["luopt","math"];
f(p1,p2,p3,p4,p5:i,s,x,y:Array,max)=
{
  s=0,i=0,(i<max).while{
    x=Array[i,0], y=Array[i,1],
    s=s+[1/(p1+p2*x^p3)+p4*x^p5-y]^2,
    i++
  },
  sqrt[s/max]
};
main(::Array,max)=
{
    max=178,
    Array=new[reals,max,2].SetArray{
160.73, 6266.7,
159.82, 6151.9,
158.84, 6035.1,
157.86, 5920.9,
156.87, 5812.6,
155.88, 5702.2,
154.89, 5594.9,
153.96, 5491.3,
152.97, 5385,
151.98, 5282.2,
150.99, 5181.3,
150.06, 5084.8,
149.08, 4988.8,
148.09, 4892.2,
147.1 , 4796.9,
146.17, 4701,
145.18, 4608,
144.2 , 4515.2,
143.2 , 4429.6,
142.21, 4342.9,
141.25, 4255.6,
140.2 , 4167.1,
139.14, 4077.6,
138.05, 3987.9,
136.96, 3898.9,
135.94, 3808.5,
134.84, 3717.7,
133.74, 3628.9,
132.65, 3543,
131.57, 3456.3,

130.55, 3372.5,
129.47, 3292.8,
128.4 , 3212.7,
127.33, 3133.6,
126.34, 3056.6,
125.29, 2985.5,
124.26 , 2912.5,
123.23, 2842.9,
122.21, 2774.1,
121.21, 2708.3,
120.27, 2642.1,
119.27, 2580.2,
118.29, 2518.7,
117.32, 2459.1,
116.42, 2401.1,
115.48, 2344.3,
114.55, 2290.9,
113.62, 2237.5,
112.7 , 2189,
111.85, 2138.8,
110.94, 2089.4,
110.03 , 2042.4,
109.13 , 1998.1,
108.28, 1953.6,
107.38, 1906.6,
106.48, 1867.8,
105.6 , 1824.5,
104.72 , 1784.3,
103.91, 1745,
103.05, 1704.5,

102.2, 1668.7,
101.35, 1629 ,
100.51, 1590.4,
99.739, 1552.5,
98.913 , 1514.7,
98.103, 1476.4,
97.308, 1444.3,
96.513, 1411.4,
95.78 , 1378.5,
95.002, 1344.8,
94.239, 1307.8,
93.482, 1276.1,
92.776, 1243.5,
92.039, 1212.9,
91.314, 1178.7,
90.604 , 1148.4,
89.942, 1115.9,
89.244 , 1084.5,
88.559, 1051.5,
87.889, 1029.7,
87.226, 996.16,
86.569 , 965.86,
85.963, 937.72,
85.323, 907.87,
84.694, 877.58,
84.081 , 838.17,
83.473, 819.48,
82.876, 797.76,
82.287, 768.54,
81.811, 749.96,

81.178, 724.39,
80.614 , 697.24,
80.118, 674.67,
79.574, 649.49,
79.011, 629.83,
78.478, 614.6,
78.012, 591.87,
77.494 , 573.43,
76.927, 558.94,
76.512, 539.45,
75.962, 526.99,
75.472, 514.14,
75.014, 504.11,
74.566, 484.4,
74.123, 473.23,
73.608, 468.93,
73.183, 453.77,
72.774, 448.58,
72.369, 447.73,
71.897, 431.79,
71.503, 432.45,
71.116, 432.15,
70.741, 420.71,
70.3, 427.26,
69.935, 419.76,
69.572, 407.28,
69.148, 408.04,
68.796, 393.71,
68.448, 403.74,
68.114, 408.8,

67.717, 401.26,
67.374, 400.81,
67.037, 401.89,
66.741, 408.68,
66.416, 398.49,
66.015, 414.14,
65.373, 419.78,
64.769, 426.82,
64.109, 418.42,
63.44 , 446.32,
62.772, 451.55,
62.111, 473.27,
61.508, 499.69,
60.908, 523.66,
60.219, 551.47,
59.699, 593.53,
59.119, 608.69,
58.547, 658.08,
57.992, 712.27,
57.483, 769.4,
56.969, 826.48,
56.472, 896.05,
55.989, 957.57,
55.513, 1065.1,
55.088, 1114.1,
54.651, 1195,
54.237, 1271.5,
53.836, 1355.6,
53.318, 1483.2,
52.701, 1690,

52.08 , 2245.9,
51.431, 2470.4,
50.877, 2719.1,
50.298, 2957.5,
49.74 , 3155.2,
49.2 , 3279.4,
48.702, 3546.4,
48.182, 3741,
47.681, 4021,
47.213, 4015.1,
46.768, 4304.7,
46.368, 4127.9,
45.956, 4530.9,
45.55 , 4802.9,
45.157, 5047.4,
44.799, 4804.3,
44.43 , 5164.1,
44.078, 4781,
43.727, 5175.5,
43.384, 5708.6,
43.079, 5679.6,
42.899, 5161.8,
42.719, 5399.1,
42.547, 5483,
42.253, 4839.4,
41.962, 5360.7,
41.691, 5622,
40.602, 5772.3
    },
   
Opt[@f]
};


结果(需尝试几次):

1.773989909927714e-004 7.12634775546666e-033 16.72488443285935 1.215887381574098e-003 3.043657279780005 104.376667977067

第2题:尚未获得正解

!!!using["luopt","math"];
f(p1,p2,p3,p4,p5,a1,a2,a3,a4:i,s,x1,x2,x3,x4,y:Array,max)=
{
    s=0,i=0,(i<max).while{
        x1=Array[i,0], x2=Array[i,1], x3=Array[i,2], x4=Array[i,3], y=Array[i,4],
        s=s+[(p1+p2*x1+p3*x2+p4*x3+p5*x4)/(1+a1*x1+a2*x2+a3*x3+a4*x4)-y]^2,
        i++
    },
    sqrt[s/max]
};
init(::Array,max)=
{
    max=18,
    Array=new[reals,max,5].SetArray{
15100, 29000, 508.0, 180, 3.40,
20500, 43350, 453.7, 141, 3.00,
80000, 92610, 487.9, 132, 2.70 ,
91500, 142775, 572.3, 182, 3.37,
82500, 2123160, 455.7, 113, 6.89 ,
20000, 227800, 481.3, 170, 5.03 ,
17800, 140000, 541.3, 179, 3.55 ,
3900,  15980, 538.6, 186, 2.72 ,
17300, 223200, 460.6, 100, 4.05 ,
25700, 229400, 393.1, 133, 3.22 ,
49400, 424500, 373.9, 106, 2.65 ,
40700, 561700, 482.8, 107, 1.91 ,
77000, 563600, 482.1, 140, 3.00 ,
92900, 557600, 415.1, 121, 1.31 ,
63300, 528300, 536.7, 144, 2.33 ,
51600, 488940, 385.1, 154, 3.55 ,
60000, 480500, 412.2, 111, 3.37 ,
70000, 530500, 567.2, 139, 2.55
    },
    Opt[@f, optmax,100, optmode,800, optwaysimdeep, optwayconfra, optdeep,50, optrange,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5,-1e5,1e5]
};

结果(目前最佳结果):

4.583427346530832 2.621772251388336e-004 -7.953081331666974e-006 -2.705145975115526e-002 3.317684739245875e-002 9.543357732870576e-005 -3.046125660450937e-006 -6.69775198496449e-003 6.681298851773985e-003 0.4396473216975189

第3题:

!!!using["luopt"];
g(x,y,p1,p2,p3)={p1/(1+p2/x+x/p3)-y}^2;
f(p1,p2,p3)=
{
    sqrt{[g(80.0 , 6.64 ,p1,p2,p3)+
    g(140.9 , 11.54 ,p1,p2,p3)+
    g(204.7 , 15.89 ,p1,p2,p3)+
    g(277.9 , 20.16 ,p1,p2,p3)+
    g(356.8 , 21.56 ,p1,p2,p3)+
    g(453.0 , 21.69 ,p1,p2,p3)+
    g(505.6 , 22.66 ,p1,p2,p3)+
    g(674.5 , 23.15 ,p1,p2,p3)+
    g(802.32 , 18.16 ,p1,p2,p3)+
    g(936.04 , 16.81 ,p1,p2,p3)]/10}
};
Opt[@f];

结果(需尝试几次):

-101.0805795116041 -1258.521466815511 -170.1106261401753 0.8767278704475284

第4题:

!!!using["luopt","math"];
f(a0, a1, a2, a3, a4,b1,b2,b3,b4:i,s,x1,x2,x3,x4,y:Array,max)=
{
    s=0,i=0,(i<max).while{
        x1=Array[i,0], x2=Array[i,1], x3=Array[i,2], x4=Array[i,3], y=Array[i,4],
        s=s+[(a0+a1*x1+a2*x2+a3*x3+a4*x4)/(1+b1*x1+b2*x2+b3*x3+b4*x4)-y]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=23,
    Array=new[reals,max,5].SetArray{
        14 , 1.38 , -34, 16, 582 ,
        10, 0.52 , -29, 2 , 458 ,
        13 , 1.70 , -32 , 13 , 559 ,
        24 , 0.80 , 24 , 1 , 322 ,
        12 , 1.83 , 41 , 11, 399 ,
        6 , 1.77 , -50 , 7 , 523 ,
        18, 1.23 , 27 , 4 , 322 ,
        -10, 0.28, -8, 6 , 358 ,
        0 , 1.20 , 66 , 6 , 354 ,
        14 , 1.75, -60 , 6 , 574 ,
        12 , 1.78 , -70 , 7 , 489 ,
        -18, 1.37, -15 , 0 , 232 ,
        16, 1.38, 0 , 4 , 440 ,
        -4, 0.29, -9 , -7, 421 ,
        -23, 1.12, -12, -14, 181 ,
        5 , 1.52, 0 , 10 , 426 ,
        -16, 0.63, 34 , 1 , 364 ,
        -1 , 1.32 , 22 , -7 , 375 ,
        -18, 1.18, 4 , -11, 224 ,
        8., 1.50 , -11 , 5 , 514 ,
        -8 , 1.43, 4 , -12, 381 ,
        -11, 0.74, 10 , 0 , 275 ,
        -19, 1.07, -5, 0 , 426
    },
    Opt[@f, optwaysimdeep, optwayconfra]
};

结果(需求解几次):

674.6781937042127 227.7453915656436 2120.317418232974 1.643200016850861 -176.0515628702959 0.5725832815136416 5.556417489954765 3.344065962703589e-002 -0.5600170829989317 48.05714060993065

第5题:

!!!using["luopt","math"];
f(p1, p2, p3, p4, p5,p6,p7,p8:i,s,x,y,z:Array,max)=
{
    s=0,i=0,(i<max).while{
        x=Array[i,0], y=Array[i,1], z=Array[i,2],
        s=s+[ p1+p2*x^p3+p4*y^p5+p6*x^p7*y^p8-z]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=24,
    Array=new[reals,max,3].SetArray{
500, 25, 1.5 ,
500, 50, 2.25 ,
500, 100 ,3.15 ,
500, 200, 4.0 ,
500, 300, 4.2 ,
500, 400, 4.3 ,
1000, 25 , 1.45 ,
1000, 50 , 2.35 ,
1000, 100, 3.95 ,
1000, 200, 6.95 ,
1000, 300, 8.15 ,
1000, 400, 8.4 ,
1500, 25 , 1.45 ,
1500, 50 , 2.45 ,
1500, 100, 4.15 ,
1500, 200, 7.45 ,
1500, 300, 10.65 ,
1500, 400, 11.85 ,
2000, 25 , 1.45 ,
2000, 50 , 2.5 ,
2000, 100, 4.2 ,
2000, 200, 7.75 ,
2000, 300, 11.45 ,
2000, 400, 14.3
    },
    Opt[@f, optmax,200, optwaysimdeep, optwayconfra, optdeep,50]
};

结果(需多次求解):

1.028492626137522 -2.750850635111363e-014 4.045587756019219 -1.367092297732806e-003 1.623222334047968 2.679931221480448e-003 0.2533017000609598 1.268069564889027 0.2703296912011674

第6题:

!!!using["luopt","math"];
f(a0, a1, a2, a3, k1,k2,k3 :i,s,x,y:Array,max)=
{
    s=0,i=0,(i<max).while{
        x=Array[i,0], y=Array[i,1],
        s=s+[ a0+a1*x^k1+a2*x^k2+a3*x^k3-y]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=10,
    Array=new[reals,max,2].SetArray{
        1.0, 8.2,
        2.0, 4.6,
        3.0, 4.3,
        4.0, 4.6,
        5.0, 5.1,
        6.0, 5.5,
        7.0, 5.7,
        8.0, 5.5,
        9.0, 5.0,
        10.0,3.8
    },
    Opt[@f, optwaysimdeep, optwayconfra]
};

结果(需多次求解):

-2.435047968667117 -5.596012968756312e-004 1.746941301238457 8.888535605114285 4.021264991475747 0.8188562111431067 -1.1645140483289 2.147261368496635e-002

第7题:

!!!using["luopt","math"];
f(p1, p2, p3, p4, p5,p6,p7:i,s,x,y,z:Array,max)=
{
    s=0,i=0,(i<max).while{
        x=Array[i,0], y=Array[i,1], z=Array[i,2],
        s=s+[ (p1+p2*x+p3*y+p4*x*y)/(1+p5*x+p6*y+p7*x*y)-z]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=21,
    Array=new[reals,max,3].SetArray{
4332, 26.94 , 43.70 ,
4697, 23.64 , 44.50 ,
5062, 25.19 , 47.70 ,
5428, 28.60 , 52.30 ,
5793, 28.74 , 54.21 ,
6158, 29.33 , 55.58 ,
6523, 32.92 , 55.70 ,
6889, 31.87 , 57.70 ,
7254, 33.07 , 58.60 ,
7619 , 29.36 , 60.24 ,
7984, 27.96 , 59.13 ,
8350 , 30.18 , 57.00 ,
8715 , 37.84 , 57.30 ,
9080 , 38.86 , 59.00 ,
9445 , 35.18 , 60.20 ,
9811 , 28.81 , 61.80 ,
10176, 34.57 , 63.17 ,
10541, 37.49 , 66.23 ,
10906, 29.30 , 61.80 ,
11272, 32.47 , 62.03 ,
11637, 38.24 , 65.30
    },
    Opt[@f, optmax,100, optmode,200, optwaysimdeep, optwayconfra, optdeep,50, optrange,-1e10,1e10,-1e10,1e10,-1e10,1e10,-1e10,1e10,-1e10,1e10,-1e5,1e5,-1e5,1e5]
};

结果(需多次求解):

92.07386083215749 -2.673470802502084e-002 -2.720784311480835 7.444462298472703e-004 -3.845503645661088e-004 -3.039200875467085e-002 1.070399375206463e-005 1.006260685262059

第8题:

!!!using["luopt","math"];
f(p1, p2, p3, p4, p5,p6:i,s,x1,x2,x3,y:Array,max)=
//目标函数定义
{
    s=0,i=0,(i<max).while{
        x1=Array[i,0], x2=Array[i,1], x3=Array[i,2], y=Array[i,3],
        s=s+[ p1/((p2+x1)*(1+p3*x2)*(x3-p4)^2)+p5*x3^p6-y]^2,
        i++
    },
    sqrt[s/max]
};
main(::Array,max)=
{
    max=27,
    Array=new{reals,max,4, data:
        34.9, 0.043378, 8., 0.996556 ,
        34.9, 0.216888, 8., 0.985708 ,
        34.9, 0.433776, 8., 0.973826 ,
        58.2, 0.026027, 8., 0.999409 ,
        58.2, 0.130133, 8., 0.99817 ,
        58.2, 0.260265, 8., 1.000176 ,
        93.1, 0.016267, 8., 0.995131 ,
        93.1, 0.081333, 8., 1.009887 ,
        93.1, 0.162666, 8., 1.008251 ,
        34.9, 0.043378, 20., 0.835576 ,
        34.9, 0.216888, 20., 0.777734 ,
        34.9, 0.433776, 20., 0.715483 ,
        58.2, 0.026027, 20., 0.854949 ,
        58.2, 0.130133, 20., 0.822743 ,
        58.2, 0.260265, 20., 0.784273 ,
        93.1, 0.016267, 20., 0.85902 ,
        93.1, 0.081333, 20., 0.841512 ,
        93.1, 0.162666, 20., 0.81895 ,
        34.9, 0.043378, 40., 0.387322 ,
        34.9, 0.216888, 40., 0.338941 ,
        34.9, 0.433776, 40., 0.293558 ,
        58.2, 0.026027, 40., 0.342388 ,
        58.2, 0.130133, 40., 0.311761 ,
        58.2, 0.260265, 40., 0.280112 ,
        93.1, 0.016267, 40., 0.308071 ,
        93.1, 0.081333 , 40., 0.287257 ,
        93.1, 0.162666, 40., 0.264443
    },
    Opt[@f, optwaysimdeep, optwayconfra]
};

结果(需多次求解):

178963.6676067503 3672.74944952677 0.530211167053818 27.80500822839966 195.3596009106615 -2.596554487779508 1.977698395027922e-002

第9题:

!!!using["luopt"];
y(x,a,b,c,d)=a*exp(b*abs(x+c)^d);
f(a,b,c,d)=
{
    sqrt{{[y(27.25 ,a,b,c,d)-1]^2
    +[y(27.75 ,a,b,c,d)-3]^2
    +[y(28.25 ,a,b,c,d)-6]^2
    +[y(28.75 ,a,b,c,d)-13]^2
    +[y(29.25 ,a,b,c,d)-18]^2
    +[y(29.75 ,a,b,c,d)-19]^2
    +[y(30.25 ,a,b,c,d)-17]^2
    +[y(30.75 ,a,b,c,d)-16]^2
    +[y(31.25 ,a,b,c,d)-6]^2
    +[y(31.75 ,a,b,c,d)-5]^2
    +[y(32.25 ,a,b,c,d)-2]^2}/11}
};
Opt[@f, optwaysimdeep, optwayconfra];
//Opt[@f, optwaygrow, optwaygrad,0];    //也可以使用此语句,效果更好

结果(需多次求解):

19.15817773649649 -0.3625927565554836 -29.81592272236692 2.297951055806539 1.15469090018263

4 求方程(组)的全部解

[返回页首] luopt::iFind(f, luopt::optmax,m, luopt::optrange,min,max, luopt::opteps,eps, luopt::optexact,exact, luopt::optpara,x1,x2,..., luopt::optthis,i, luopt::optmin0,min0, luopt::optsameeps,sameeps, luopt::optsameabs,sameabs, luopt::optstarter,starter, luopt::optarray,a, luopt::optarraybegin,&k, luopt::optout,out, luopt::optnum,num):求单变量方程的全部解

f:自定义n元函数句柄,不可缺省。格式如下:

f(x1,x2,...,xn)=
{
    ... ...
};

    默认求方程f(x1,x2,...,xn)=0第一个自变量的全部解,而其他自变量赋值为0.0。可以用参数optthis指定求解的自变量,也可以用参数optpara给出其他自变量的值。

luopt::optmax,m:区间分割数目(大于等于10),区间分割数目越多精度越高。可以缺省该参数,缺省值为200。
luopt::optrange,min,max:指定求解区间。若缺省该参数,则min为-1e50,max为1e50。
luopt::opteps,eps:控制精度要求,eps>0。可以缺省该参数,缺省值为1e-6。
luopt::optexact,exact:控制精度的方式,exact非0将严格控制精度,否则只追求解的正确性,尽可能满足解的精度。可以缺省该参数,将严格控制解的精度。
luopt::optpara,x1,x2,...:给指定求解自变量之外的其他自变量赋值,参数x1,x2,...的个数比全部自变量个数少1。若缺省该参数,其他自变量缺省值均为0.0。
luopt::optthis,i:指定求解的自变量。0表示第一个自变量;1表示第二个自变量,以此类推。若缺省该参数,i为0。
luopt::optmin0,min0:解的可能的极小值。可以缺省该参数,缺省值为±1e-50。
luopt::optsameeps,sameeps:相对比较两组值是否相等的极小值。sameeps>0。可以缺省该参数,缺省值为1e-3。
luopt::optsameabs,sameabs:绝对比较两组值是否相等的极小值。sameeps>=0。可以缺省该参数,缺省值为0.0。
luopt::optstarter,starter:提供一个初值。可以缺省该参数。
luopt::optarray,a:提供一个数组,用于接受结果。一组结果包括所有的自变量参数及误差。默认从数组开始存放数据,也可用参数optarraybegin指定开始存放数据的位置。可以缺省该参数。
luopt::optarraybegin,&k:指定数组中开始存放数据的位置,k返回下一个存放位置。可以缺省该参数,默认从地址0开始存放。
luopt::optout,out:是否输出结果。out非0时输出。可以缺省该参数,默认输出结果。
luopt::optnum,num:设置最多求解的解的个数。可以缺省该参数,默认最多求解100个解。

返回值:解的个数。

运行错误:

1:指定的表达式不存在;
2:常量表达式;
3:自变量参数重新赋值,这是不允许的;
4:参数不匹配;
5:不可识别描述符;
6:参数不符合要求;
7:自定义函数返回了非法值。

例子1:求方程的全部解:f(x)=x^6-5*x^5+3*x^4+x^3-7*x^2+7*x-20;

f(x)=x^6-5*x^5+3*x^4+x^3-7*x^2+7*x-20;
luopt::iFind[@f];

例子2:求方程的全部解(x取-8~8,y取1):f(x,y)=(x^2+y^2)^3-36*(x^2-y^2)^2;

!!!using("luopt");
f(x,y)=(x^2+y^2)^3-36*(x^2-y^2)^2;
iFind[@f,optrange,-8.,8.,optpara,1.];

例子3:求方程的全部解(x取1,y取-8~8):f(x,y)=(x^2+y^2)^3-36*(x^2-y^2)^2;

!!!using("luopt");
f(x,y)=(x^2+y^2)^3-36*(x^2-y^2)^2;
iFind[@f, optrange,-8.,8., optthis,1, optpara,1.];

[返回页首] luopt::Find(f, luopt::optmax,m, luopt::optmode,mode, luopt::optdeep,deep, luopt::optrange,x1min,x1max,x2min,x2max,...,xnmin,xnmax, luopt::optautorange,autorange,luopt::opteps,eps, luopt::optmin0,min0, luopt::optsameeps,sameeps, luopt::optsameabs,sameabs, luopt::optstarter,&x1,&x2,...,&xn,&min, luopt::optarray,a, luopt::optarraybegin,&k, luopt::optexpand,expand, luopt::optcontract,contract, luopt::optdx,dx, luopt::optstep,step, luopt::optout,out, luopt::optnum,num):求方程组的全部解

f:自定义2*n元函数句柄,不可缺省,必须由二级函数HFor获得该句柄。格式如下:

f(x1,x2,...,xn,y1,y2,...,yn)=
{
    y1= ...,
    y2= ...,
    ... ...,
    yn= ...
};

luopt::optmax,m:随机点的数目(大于等于10),点数越多精度越高。可以缺省该参数,缺省值为200。
luopt::optmode,mode:工作模式,取0、1、2、3、... ...。通常,工作模式取值越大,搜到的解越多,但耗时越长。若缺省该参数,工作模式取0。
luopt::optdeep,deep:搜索深度,取0、1、2、3、... ...。通常,搜索深度取值越大,搜到的解越多,但耗时越长。若缺省该参数,搜索深度取0。
luopt::optrange,x1min,x1max,x2min,x2max,...,xnmin,xnmax:指定求解区间。若缺省该参数,则所有变量区间均为[-1e50~1e50]。
luopt::optautorange,autorange:autorange!=0时将在指定搜索区间内自动调节合适的搜索区间,否则不进行调节。默认是不会自动调节搜索区间的。
luopt::opteps,eps:控制精度要求,eps>0。可以缺省该参数,缺省值为1e-6。满足sqrt[(y1*y1+y2*y2+...+yn*yn)/n]<eps
luopt::optmin0,min0:解的可能的极小值。可以缺省该参数,缺省值为±1e-50。
luopt::optsameeps,sameeps:相对比较两组值是否相等的极小值。sameeps>0。可以缺省该参数,缺省值为1e-2。
luopt::optsameabs,sameabs:绝对比较两组值是否相等的极小值。sameeps>=0。可以缺省该参数,缺省值为1e-3。
luopt::optstarter,&x1,&x2,...,&xn,&min:前n个参数提供一组初值,并返回一组解;最后一个参数min返回该组解的误差。可以缺省该参数。
luopt::optarray,a:提供一个数组,用于接受结果。一组结果包括所有的自变量参数及误差。默认从数组开始存放数据,也可用参数optarraybegin指定开始存放数据的位置。可以缺省该参数。
luopt::optarraybegin,&k:指定数组中开始存放数据的位置,k返回下一个存放位置。可以缺省该参数,默认从地址0开始存放。
luopt::optexpand,expand:扩张系数。一般取1.2~2.0。可以缺省该参数,缺省值为1.6。
luopt::optcontract,contract:收缩系数。一般取0~1。可以缺省该参数,缺省值为0.5。
luopt::optdx,dx:搜索增量初值,dx>0。可以缺省该参数,缺省值为0.1。
luopt::optstep,step:搜索步长修正系数。step取0~1之间的数。可以缺省该参数,缺省值为0.1。
luopt::optout,out:是否输出结果。out非0时输出。可以缺省该参数,默认输出结果。
luopt::optnum,num:设置最多求解的解的个数。可以缺省该参数,默认最多求解10个解。

返回值:解的个数。

说明:需要多次运行该函数以获得需要的解。

运行错误:

1:指定的表达式不存在;
2:常量表达式或者参数不成对;
3:内存错误;
4:参数不匹配;
5:不可识别描述符;
6:参数不符合要求;
7:自定义函数返回了非法值。

例子1:解方程组:

(x-y)^2-3*(x-y) = 10
x^2+2*x*y+y^2 = 9

代码:

f(x,y,y1,y2)=
{
  y1=(x-y)^2-3*(x-y)-10,
  y2=x^2+2*x*y+y^2-9
};
luopt::Find[@f];

例子2:解方程组:

2*x1-x2^2-exp(-x1) = 0
-(x1^3)+x1*x2-exp(-x2) = 0

代码:

f(x1,x2,y1,y2)=
{
  y1=2*x1-x2^2-exp(-x1),
  y2=-(x1^3)+x1*x2-exp(-x2)
};
luopt::Find[@f];

例子3:解方程组:t取-7~7

-b*sin(a+6*t)+n-40.4945=0
-b*sin(a+7*t)+n-40.5696=0
-b*sin(a+8*t)+n-41.0443=0
-b*sin(a+9*t)+n-41.4190=0

代码:

!!!using["luopt"];
f(a,b,n,t,y1,y2,y3,y4)=
{
  y1=-b*sin(a+6*t)+n-40.4945,
  y2=-b*sin(a+7*t)+n-40.5696,
  y3=-b*sin(a+8*t)+n-41.0443,
  y4=-b*sin(a+9*t)+n-41.4190
};
Find[@f, optmode,5, optrange,-1e50,1e50,-1e50,1e50,-1e50,1e50,-7.,7.];


版权所有© Lu程序设计 2011-2013,保留所有权利
E-mail: forcal@sina.com
  QQ:630715621
最近更新: 2016年08月25日